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Social vulnerability to floods in two coastal
megacities: New York City and Mumbai

Alex de Sherbinin and Guillem Bardy∗

Abstract

In this paper we assess differential exposure to flooding in two coastal megacities,
New York and Mumbai, both of which suffered major flood-related disasters in the
past decade. Specifically, we examine whether the most exposed populations are
also the most socially vulnerable. First, we developed Social Vulnerability Indices
(SoVIs) for each city with census data. We then overlaid the SoVI scores onto
flood extent maps for Hurricane Sandy (New York, October 2012) and the Mumbai
flash floods (July 2005), as well as for the evacuation zones for New York, to
examine patterns of differential exposure. Our results suggest a degree of differential
exposure in New York, especially in the highest flood risk areas, and provide fairly
clear evidence for differential exposure in Mumbai. However, differences in the
input resolution and confidence in the datasets for Mumbai make the results more
uncertain. The paper concludes with a discussion of the policy implications and the
data needs for urban spatial vulnerability assessments.

1 Introduction

There is growing interest among researchers and policy-makers in the risks to
and the vulnerability of cities as the climate changes. This issue is attracting
considerable attention in response to mounting evidence that the probability of
extreme events of high magnitudes is increasing owing to anthropogenic climate
change (Fischer & Knutti 2015, IPCC 2012, IPCC 2007); that the world’s
population is becoming increasingly urban (UNFPA 2007); and that urban systems
are particularly susceptible to certain kinds of climate impacts, such as storm surges,
cyclones with high winds, floods, extreme heat, and—over the long term—sea
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level rise (SLR) (Jha et al. 2012, Rosenzweig et al. 2011a). Although vulnerability
assessment is gaining increasing attention, the literature on urban areas and climate
change tends to be more heavily weighted toward impact and risk assessment, in
which the focus is on the likely damage to infrastructure or health impacts on
populations from events of various magnitudes (Lane et al. 2013, Rosenzweig et al.
2011a, Preston et al. 2007). A high proportion of these studies focus on flood and
storm surge risk (UN HABITAT 2013, Jha et al. 2012, Storch et al. 2011, Kit et al.
2011, Rosenzweig et al. 2011b, Hallegate et al. 2010, Lin et al. 2010, Nicholls et al.
2008, Kleinen and Petschel-Held 2007), although populations who face risks related
to heat waves (Wilhelmi et al. 2004, Kinney et al. 2000) and drought (and attendant
water scarcity) (McDonald et al. 2011) are also included in some risk assessments.

Climate and risk researchers have often focused on infrastructure impact
assessment using top-down expert- or model-driven approaches because they are
less complex than approaches that incorporate social vulnerability (Soares et al.
2012, Cutter et al. 2003). Yet social vulnerability to climate change is also high,
especially in urban areas with large, concentrated populations and a high degree of
social stratification (Romero Lankao and Qin 2010). It is now widely appreciated
that differences in demographic characteristics—e.g. income, educational level,
race, social class, housing type, and occupation—are key contributors to social
vulnerability (WHO 2010). Cutter et al. (2003) defined these characteristics as
“social factors that influence or shape the susceptibility of various groups to harm
and that also govern their ability to respond”.1 Differential vulnerability based on
factors such as race, ethnicity, income, and gender was identified by Soares et al.
(2012) as one of nine key concepts in vulnerability research. According to Pelling
(2002), “the matter of which groups of people are exposed to living with physical
insecurity is not decided by random forces,” but rather by patterns of political
exclusion, wealth differentials, and power relations. Although there is evidence
that urban populations with higher levels of social vulnerability generally suffer
greater impacts from climate-related hazards (Reckien et al. forthcoming and 2013,
Cutter and Emrich 2006, Laska 2006), there is less research that combines spatial
patterns of social vulnerability and exposure to test the hypothesis, articulated by
Pelling, that populations with higher levels of social vulnerability are more exposed
to climate hazards than populations who are less socially vulnerable.

The goal of this paper is to use spatial methods to test the hypothesis that there
are higher levels of social vulnerability in flood-prone areas of New York City and
Mumbai. We use the term ‘differential exposure’ rather than the term ‘differential
vulnerability’ (Soares et al. 2012), which focuses on population characteristics that
make some population groups more sensitive to environmental stressors than others.

1 Throughout this paper, we use the term vulnerability in the sense of social, contextual, or intrinsic
vulnerability (O’Brien et al. 2007); rather than in the sense of outcome vulnerability, defined by the
IPCC fourth assessment report as comprising exposure, sensitivity, and adaptive capacity (Parry et al.
2007).
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There are theoretical reasons that would both support and refute a proposed link
between high levels of social vulnerability and flood exposure. On the one hand,
areas exposed to floods may have lower housing prices, which tend to attract poorer
and less informed populations. There is evidence that this is the case in two highly
flood-prone cities: Kampala, Uganda (Sliuzas et al. 2013, Nyakaana 2006) and
Lagos, Nigeria (Agbola and Agunbiade 2009). On the other hand, wealthier people
may be more exposed to coastal flooding, as property prices are often highest in
close proximity to the shore. The collective action literature suggests, however, that
wealthier populations are often able to mobilize to obtain the coastal infrastructure
needed to protect their homes, and may therefore be less exposed than poorer popu-
lations (Adger 2003). Thus, on balance it is possible to argue that in all but the most
extreme events the wealthiest populations are the least likely of the income groups
to be exposed. We return to these theoretical linkages in our concluding discussion.

We chose to focus on New York City and Mumbai because they represent
socioeconomically diverse cities at different ends of the global development
spectrum that are highly vulnerable to flood hazards, and because they can be
used to illustrate how the spatial resolution of data inputs affects our confidence in
the results. First, we summarize recent research on spatial approaches to assessing
differential exposure. We then discuss the two cities’ levels of vulnerability to flood
hazards, followed by a presentation of methods and results. We conclude with a
discussion of broader issues related to uncertainty and the spatial resolution of input
data in vulnerability assessments, and of the theoretical and policy implications of
this research.

2 Literature review

While there is relatively abundant environmental justice (EJ) literature that shows
that poor neighborhoods are differentially exposed to environmental hazards in
the form of polluting industries, toxic waste sites, and air pollution sources
such as highways (e.g. Crowder and Downey 2010, Mitchell and Dorling 2003,
Bowen et al. 1995), there is less work that explores differential exposure to
climate-related hazards (Reckien et al. forthcoming). An early study on differential
exposure to climate hazards was conducted by Pelling (2002) in Santo Domingo,
Dominican Republic. He employed survey methods to examine local patterns of
self-organization and resilience in the aftermath of Hurricane Georges in 1998.
However, he focused only on one community that was both low-income and exposed
to natural hazards owing to its location on a river bank that experienced flooding
during the hurricane. Thus, the research design could not answer the question of
whether low-income communities in Santo Domingo were differentially exposed to
flood hazards.

In the United States, Hurricane Katrina—which struck New Orleans, Louisiana,
in August 2005—was a signature climate event that revealed differential
vulnerability, though not necessarily differential exposure. Curtis et al. (2007) used
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census and public health data to explore the geography and characteristics of poverty
in New Orleans prior to Hurricane Katrina, and how the specific locations and
living situations of the residents contributed to outcomes. They found that the floods
affected comparably well off and poorer communities almost equally, but that the
impacts were greater in low-income communities because people living in these
neighborhoods lacked transportation options to evacuate. In other regions the results
are varied. A first ever global analysis by Winsemius et al. (2015) estimated a
‘poverty exposure bias’ to floods for 52 countries; i.e. that poor urban populations
are often disproportionately represented in flood zones. Researching differential
exposure to flood hazards in the UK, Houston et al. (2011) found that socially
deprived areas are at slightly higher risk of pluvial flooding (rivers overtopping their
banks), particularly in cities with larger rivers in which inner-city neighborhoods
tend to be located in low-lying areas. Looking at New York City as a whole, Maantay
and Maroko (2009) found that minority populations are not disproportionately
represented in the 100-year floodplains, although in some boroughs (Manhattan,
the Bronx, and Queens) African-Americans are disproportionately represented. In
Cologne, Germany, results from an analysis by Welle et al. (2014) showed a low
degree of spatial overlap between areas with high levels of flood exposure and those
with high levels of social susceptibility, as measured by four metrics that examine
household size and age composition, with an emphasis on the ability of residents to
evacuate without assistance.

Other flood-related vulnerability assessments have been less tailored toward
assessing differential exposure. Rygel et al. (2006) constructed a Social
Vulnerability Index (SoVI) for the city of Norfolk, Virginia (United States), and
surrounding areas known to be at high risk of coastal surge and sea level rise
(SLR). While they experimented with alternative aggregation methods, they stopped
short of assessing differential vulnerability to mapped distributions of flood hazards.
Similarly, Kit et al. (2011) and Reckien et al. (2013) mapped slum distributions
and flood hazards in Hyderabad, India; and Lane et al. (2013) examined indicators
associated with higher flood vulnerability in the hurricane evacuation zones of New
York City. Yet neither of these studies tested the hypothesis that populations exposed
to floods or within these zones are more socially vulnerable than other populations.

There is a larger body of literature on differential exposure to urban heat stress,
and most U.S.-based studies have found that poorer residents are exposed to
higher temperatures than more affluent residents because low-income people are
more likely to live in crowded conditions and older building stock, and/or live in
neighborhoods with a lack of green space. An assessment of differential exposure
to urban heat stress by Uejio et al. (2011) in Phoenix and Philadelphia found that
heat distress calls in the former city and heat mortality in the latter city were
correlated with higher proportions of minority residents and lower housing values.
Other studies conducted in Philadelphia confirmed that the populations with high
levels of social vulnerability also have relatively high levels of exposure to urban
heat stress, as measured by satellite-derived land surface temperatures (Weber et al.
2015, Johnson and Wilson 2009). In a study of Washington, DC, Aubrecht and
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Özceylan (2013) created a heat stress vulnerability index (HSVI) composed of
census-derived social vulnerability metrics and a heat stress risk index (HSRI),
which is a combination of the HSVI and exposure to extreme heat. The HSRI
was found to have high values in the poorer neighborhoods of northeast, east, and
southeast Washington, DC; and particularly high values in Anacostia and Lincoln
Heights, which are low-income, predominantly African-American neighborhoods
south of the Anacostia River. De Sherbinin et al. (2012) conducted a spatial analysis
of several cities using different poverty and heat/greenness metrics aggregated to
high resolution census units. They found a positive correlation between median
housing value and greenness in Phoenix, Arizona (greenness is negatively correlated
with surface temperature (Imhoff et al. 2010)), and a slight positive correlation
between income per capita and satellite-derived surface temperature in Houston,
Texas.

In other regions, the evidence for differential exposure to heat stress is less clear.
Romero-Lankao et al. (2013) analyzed temperature, air pollution, mortality, and
socioeconomic vulnerability data for Bogota, Mexico City, and Santiago (Chile).
They found little evidence that areas experiencing greater environmental stressors
or health impacts were more likely to have populations with high levels of social
vulnerability. In Cologne, Germany, results from an analysis by Welle et al. (2014)
showed that there is a relatively high degree of spatial overlap between high heat
exposure and lack of coping capacity (as measured by household size and residents’
ages), but that there is little overlap with high levels of social susceptibility (as
measured by unemployment rates and by the shares of the population who were very
young, elderly, or foreign). De Sherbinin et al. (2012) found a positive correlation
between poverty levels and vegetation greenness in Hanoi, Vietnam, and virtually
no correlation between a multiple deprivation index produced by Baud et al. (2008)
and satellite-derived surface temperature in Delhi.2

Although the existing literature is sparse, this brief review shows that the evidence
on differential exposure by event type (flood or extreme temperatures) and by region
is mixed.

3 Overview of the two cities

Over the past decade, New York City (NYC) and Mumbai have been hit hard
by natural disasters. In the Mumbai metropolitan area at least 500 people died
as a result of the July 2005 Maharashtra flash floods, which dumped more than
900 mm of rainfall on the city in a 24-hour period (Government of Maharashtra

2 One possible explanation for the differences between U.S. and developing region cities in exposure
to heat stress is that higher-income residents have tended to remain in city center areas in many
developing countries for ease of access to work and amenities, whereas the U.S. saw the flight of many
upper-income populations to the suburbs from the 1950s onwards.
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2005). Hurricane Sandy caused 44 deaths in NYC in October 2012 (Goldstein 2013).
Owing to their demographic and geographic characteristics, these two cities are
among the top 10 port cities most exposed to coastal flooding in terms of the assets
and the population exposed (Nicholls et al. 2008).

With a population of 8.25 million spread over five boroughs (about 785 km2),
NYC has multiple waterways that create nearly 965 km of coastline affected by
tides and weather. Though street and fluvial flooding affect NYC, coastal flooding
represents the main danger. The massive coastal flooding during Hurricane Sandy
caused extensive damage to NYC’s infrastructure systems and coastal ecosystems,
resulting in the loss of property and lives (Horton et al. 2015). Coastal flooding
affects residential neighborhoods, businesses, infrastructure, coastal water quality
(including sewage and toxic chemicals contamination), and natural ecosystems.

NYC has been a world leader in climate change adaptation planning. In 2008 the
city launched the Climate Change Adaptation Task Force and the NYC Panel on
Climate Change (NPCC) to develop adaptation strategies for protecting the city’s
infrastructure from the effects of climate change (Rosenzweig and Solecki 2010).
In 2011, the city of New York updated PlaNYC, its plan to improve the city’s
sustainability, and particularly its resilience to and preparedness for extreme events
(i.e. events projected to occur once every 100 years). Despite having identified its
vulnerabilities (Horton et al. 2010, Jacob et al. 2007) and recently updated PlaNYC,
the city still found itself unprepared for the 14-foot storm surge that occurred
during Hurricane Sandy in October 2012 (Lane et al. 2013). A storm surge of this
magnitude was considered to be a once-in-500-year event (Aerts et al. 2013).

Mumbai is at an earlier stage in the urban transition, and is facing many of
the same environmental consequences of rapid economic growth and industrial
expansion that the U.S. experienced six decades ago. Within the last three decades
alone, metropolitan Mumbai’s population has tripled, from eight million in 1991
to about 20.7 million in 2011 (Census of India 2011). Mumbai is largely located
on reclaimed land, and much of the new settlement (industrial, residential, and
commercial) has occurred along the coastal areas of Greater Mumbai that are low-
lying and flood-prone (de Sherbinin et al. 2007). Although the metropolitan area of
Mumbai extends well over 4,400 km2, population growth has largely been confined
to 450 km2 in an area known as Greater Mumbai.

Over the years, topographic modifications, poor disaster planning, obsolete
drainage systems, and poor coastal zone management have all exacerbated flood
risk, thereby increasing the vulnerability levels of diverse sections of the population
and of coastal ecosystems. In particular, the influx of migrant workers has led
to the emergence of large informal settlements in low-lying areas (Parthasarathy
2009), where floods associated with extreme rainfall are highly damaging to human
health and well-being, and thus compound existing vulnerabilities (Murthy et al.
2001, Dhage et al. 2006). Urban development is steadily encroaching on wetland
ecosystems, which provide flood prevention and other important ecosystem services,
while urban effluents often lead to hypoxic and anoxic conditions in coastal waters
(Kumar et al. 2008). A study sponsored by the OECD modeled flood risks in
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Mumbai based on the July 2005 event (Ranger et al. 2011, Hallegatte et al. 2010).
The team estimated the economic costs of the flood at USD 2 billion, and projected
that under future development and climate scenarios the costs will triple. They also
provided several adaptation options, including improving drainage and increasing
insurance penetration.

Although the two cities have very different levels of economic development, both
have a high degree of social stratification, which make them useful case studies for
an assessment of differential vulnerability to flood hazards.

4 Framework, data, and methods

Our research is framed by the IPCC Special Report on Extreme Events (SREX)
conceptual framework, which construes risk as emanating from the intersection of
exposure to extreme events and social vulnerability (IPCC 2012). We measured
social vulnerability using the approach described by Cutter et al. (2003) and Emrich
(2011) for the construction of a Social Vulnerability Index (SoVI). The SoVI is
commonly used in the literature to assess social vulnerability, but here we intend to
use it as a synthetic measure of poverty and social exclusion to examine differential
exposure to floods. The SoVI builds on research that has identified the primary
social drivers of sensitivity to, and slow recovery from, natural hazards (Cutter et al.
2003, Carreño et al. 2007, Birkmann et al. 2011), including:

• Socioeconomic status (income, political power, prestige): Wealthy people are
able to recover from natural disasters and absorb losses more quickly than poor
people. Even if the total economic losses are higher for the richest people, the
most deprived people face the greatest difficulties in recovering from these
events.
• Gender: Women often face greater consequences and recover more slowly

from natural disasters than men, due to factors such as their greater likelihood
of being in sector-specific employment, having low wages, having family care
responsibilities, or being pregnant. Single mothers in particular are threatened
by natural hazards.
• Race, ethnicity, culture: Being part of an ethnic minority or foreign-born

community can be helpful in the aftermath of a disaster if social solidarity
exists. But in many circumstances being a member of minority group can
result in social exclusion and difficulties in accessing government help,
relocation, or funding because of isolation, lack of legal status, and low
language proficiency.
• Age: Because they often suffer from health and mobility problems, the elderly

are the most sensitive to disasters of all of the age groups (Al-rousan Tala et al.
2014). Early childhood is also a critical period. Children under age five are
particularly vulnerable, and therefore require attention, time, and money from
the whole family during both the disaster and the recovery process.
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• Housing stock: The quality of housing, as measured by rents, may indicate
resilience to certain types of hazards.
• Family structure: Experiencing a catastrophe and the period of recovery that

follows is especially difficult for those responsible for large families and for
single-parent households.
• Education: Having a low level of education may constrain an individual’s

ability to understand warning information and access recovery information
(Muttarak and Pothisiri 2013).
• Social dependence: People who are dependent on social services for survival

require additional support in the post-disaster period.
• Special needs populations: Infirm, institutionalized, transient, drug-addicted,

and homeless people are disproportionately affected during disasters. Because
they are difficult to identify and measure, these populations are mostly ignored
during the recovery phase.

Obviously, the factors that contribute to social vulnerability will differ depending
on the stressor (e.g. floods, extreme heat, or air pollution), but this list covers a wide
range of population factors that have been found to be important in vulnerability
studies (Carreño et al. 2007, Birkmann et al. 2011). Other factors, such as the
robustness of urban infrastructure, the existence of emergency services, and the
adequacy of governance and institutions are all important in determining outcomes,
but typically cannot be measured through census or survey data. There may also be
location-specific factors that contribute to vulnerability, such as the existence of the
caste system in India or of systematized gender discrimination.

Guided by these general factors and by the work of Cutter et al. (2003), we
constructed Social Vulnerability Indices (SoVIs) in New York City and Mumbai
based on available census data. The SoVI was originally developed to compare the
hazard vulnerability of U.S. counties, but has been modified to allow for local-
scale analyses (Cutter et al. 2006, Schmidtlein et al. 2008) and applications of
similar social vulnerability indices outside the U.S. (Fekete 2010, Crooks 2009,
Confalonieri et al. 2009). The exposure aspects were measured using the available
flood and flood risk data layers for each city. The specific indicators and flood data
layers used in each city are described in greater detail in Sections 4.1 and 4.2. Here
we provide information on the SoVI approach that is relevant to the two case studies.

The SoVI is calculated using principal components analysis (PCA). This
approach uses eigen analysis to summarize the statistical properties of the indicators
simultaneously by identifying a set of n uncorrelated principal components (PCs),
where n = the number of indicators. The PCs are linear combinations of the
indicators that are conceptually similar to a line of best fit through the data cloud.
The first PC explains the greatest amount of variation in the n-dimensional data
cloud; and the second PC explains the next largest amount of variation, subject to
the constraint that it is orthogonal (or uncorrelated) to the first PC. Because the PCs
are uncorrelated, the scores associated with each PC encapsulate a unique aspect of
social vulnerability represented by the original set of indicators. SoVI scores can
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Figure 1:
Population by block group (quintiles)

be interpreted as unit variance or z-scores; zero represents the mean, positive scores
represent higher vulnerability, and negative scores represent lower vulnerability.

As suggested by the SoVI recipe (Emrich 2011) and Schmidtlein et al. (2008), we
performed the PCA using a varimax rotation and only selected the components with
an eigenvalue superior to one (Kaiser Criterion). Varimax rotation tends to load each
variable highly on just one component in order to ease component interpretation
(Schmidtlein et al. 2008). In both cities we named each of the PCs based on the
indicators that loaded most highly on that PC. Demšar et al. (2013) discussed the
merits of spatial PCA (sPCA), which takes into account spatial effects with respect
to spatial heterogeneity or autocorrelation. We chose not to conduct a sPCA because
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it is not yet common practice to perform such an analysis in SoVI construction,3
and we were not convinced that doing so would have yielded significantly improved
results, given that our main interest is in how the indicators co-vary over space.

It is a common practice to invert (reverse the directionality) of PCs by multiplying
scores by −1 in cases in which higher values can be construed as being associated
with lower vulnerability (Emrich 2011, Thornton et al. 2008). Once all of the PCs
have the same directionality, they can be averaged together, with each PC given
equal weight (which we call an ‘Averaged SoVI’). Alternatively, a weighted average
can be created in which each PC is multiplied by the variance it explains (which we
call a ‘Weighted SoVI’). Schmidtlein et al. (2011) stated that the SoVI algorithm
does not appear to be substantially influenced by scalar changes, but is sensitive to
variations in its construction. The SoVIs we constructed are obviously influenced by
the choice of variables and the aggregation method, but a comparison using different
approaches to SoVI construction suggested that the results were broadly similar.

In each city, we compare SoVI scores within different flood exposure categories,
and in the case of New York, evacuation zones. For each exposure category we
calculated a population weighted mean of the Average and the Weighted SoVIs.
Figure 1 shows the population by block group. The population-weighted SoVI
avoids the potential problem that block groups with very low populations could have
a disproportionate influence on the average score by exposure category; since our
concern is with the exposure of populations, it is appropriate to apply the population
weight using the following formula:

SoVIZ =

n∑
i=1

(SoVIi ∗ Pi)
/ ( n∑

i=1

Pi

)
Where:

SoVIZ = SoVI population-weighted score for the zone Z (exposure category),
SoVIi = SoVI of the i block
Pi = Population of the i block

With these population-weighted means, we were able to test whether there is a
statistically significant difference in the mean scores by exposure category for each
of the two cities.

In line with Winsemus et al. (2015) we also tested an additional metric, the
‘poverty exposure bias’ (PEB), which compares the fraction of the poor population
with the fraction of the total population exposed to floods in each city. This summary
metric, while not as sophisticated, provides an additional test of differential
exposure.

3 We were unable to find a single SoVI analysis that used sPCA. Indeed, Demšar et al. reported that
“in surveyed literature we found proportionally few studies that use spatially adapted versions of PCA
to analyze their data” (p. 123).
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4.1 New York

4.1.1 New York social vulnerability

For New York, we began with a list of relevant variables published on the Hazards
and Vulnerability Research Institute’s SoVI website4 (USC undated), but modified
the list based on their applicability to the NYC context and flood vulnerability.
The choice of variables is obviously important, since not all variables are directly
relevant to every type of hazard (Welle et al. 2014). We chose a somewhat liberal
approach to the construction of the SoVI for flood exposure, but also tested the
importance of individual variables with stronger theoretical ties to flood exposure
to see if the results differed substantially. Table 1 provides a list of the variables
we removed and our reasons for removing them. We used data from the 2010
U.S. Decennial Census and five-year estimates from the 2006–2010 American
Community Survey. The U.S. Decennial Census covers the entire American
population on years ending with ‘0’, and includes a reduced set of variables. The
American Community Survey (ACS) is an ongoing statistical survey that gathers
information on about one in 38 households every year. The Census Bureau releases
estimates based on one, three, and five years of data. As recommended on the SoVI
website, we used data from the ACS five-year estimates for 2006–2010 because they
are more robust and better match the decennial census data. In cases in which the
data existed in both datasets, we selected the census data, as they represent a full
count and not an estimate.

We recognize that the uncertainty levels in the three-year ACS data are very high
at smaller geographies, such as block groups and census tracts (Spielman et al. 2014,
Bazuin and Frazier 2013). Thus, we believe that the use of a mix of decennial census
variables, five-year estimates, and a relatively large number of variables mitigates
the risk of spurious results. Roughly two-thirds (13 out of 21) of the variables were
obtained from the decennial census, and seven out of 11 of the variables that were
found to be most highly correlated with the top five PCs (and therefore contributed
most to the SoVI scores) were from the decennial census.

We collected data at the block group level for both the census and the ACS, which
is the smallest unit at which data are reported. The data were from three websites:
American Fact Finder, Social Explorer, and Data Ferret.5 The average population
of a block group in NYC is 1,300 inhabitants, and there were 6,198 block groups
covering the city’s five boroughs, for a total population of approximately 7.8 million
people. Table 2 provides the list of the variables we selected together with the broad
category, the origin of the data, and the effect on the SoVI.

4 The SoVI was developed by Susan Cutter and colleagues at the Hazards and Vulnerability Research
Institute.
5 http://factfinder.census.gov/, http://www.socialexplorer.com/ and http://dataferrett.census.gov/,
respectively.
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Table 1:
Discarded variables from the SoVI

Variables removed Reason

Percent Urban Population Not pertinent in a city, and very low variability
Percent Employment in Extractive

Industries (e.g. mining)
Not pertinent in a city, and very low variability

Percent Employment in Services Not theoretically relevant to flood exposure
Median Housing Value Too many missing values at block group level
Median Gross Rent Data not consistent at block group level
Percent Mobile Homes Not pertinent in a city, and very low variability
Percent Civilian Unemployment Data not available at block group level
Hospitals Per Capita Data not available at block group level
Percent of Population Without Health

Insurance
Data not available at block group level

The variables were normalized where necessary by transforming raw figures into
comparable indicators, such as percentage of population or density. We analyzed the
data while focusing on the following: (1) the level of reliability and confidence in
the datasets (e.g. the estimations we had on housing prices were not reliable at our
block group scale); (2) the correlation among variables, discarding those that are too
highly correlated (if two variables cover the same information we do not need both);
and (3) removing block groups without data, such as parks and industrial areas, or
block groups without housing units (e.g. the Rikers Island jail complex). The result
was a single file with 21 variables and 6,199 block groups. A correlation/covariance
matrix for all of the variables is found in Tables A.1 and A.2 in the appendix.
Finally, we performed the PCA as described in above, and we extracted five factors
explaining a total of 71.1% of the variance of our original dataset (see Table 3). We
inverted Factor 5, and then developed averaged and weighted SoVI scores, which
are shown in Figure 2. The results are broadly similar.

Examining Figure 2, we can see that the most vulnerable block groups are often
located together, forming large socially vulnerable areas.

• The eastern part of Brooklyn (Bushwick, Bedford-Stuyvesant, East Flatbush,
Brownsville, Canarsie or East New York)
• Northern Manhattan and a large part of the Bronx
• Southeastern Manhattan (Chinatown and the Lower East Side)
• Coney Island and Brighton Beach
• Downtown Flushing in northern Queens

By contrast, most of Staten Island, the southern half of Manhattan (except the Lower
East Side neighborhoods) and southeastern Queens have very low SoVIs, and thus
show low levels of social vulnerability to climate extremes.



Alex de Sherbinin and Guillem Bardy 143

Table 2:
List of variables used for New York’s SoVI

Effect
Variable Category Origin on SoVI

Percent Black Race/Ethnicity Census +

Percent Native American Race/Ethnicity Census +

Percent Asian Race/Ethnicity Census +

Percent Hispanic Race/Ethnicity Census +

Percent of Population Under Age 5 or
Over Age 65

Age Census +

Percent of Children Living in Married
Couple Families

Family Structure Census −

Median Age Age Census +

Percent of Households Receiving Social
Security

Age, Dependency ACS +

Percent Poverty Income ACS +

Percent of Households Earning More
Than $200,000 Annually

Income ACS −

Per Capita Income Income ACS −

Percent Speaking English as a Second
Language with Limited Proficiency

Race/Ethnicity ACS +

Percent Female Gender Census +

Percent Female-Headed Households Gender, Family Structure Census +

Percent of Population Living in Nursing
and

Age, Dependency Census +

Skilled-Nursing Facilities
Percent with Less Than 12th Grade

Education
Education ACS +

Population Density (Population per
Square Mile)

Urbanization Census +

People per Housing Unit Family Structure Census +

Percent Renters Income, Tenancy Census +

Percent of Housing Units with No Car Income, Urbanization ACS +

4.1.2 New York flood exposure

For New York we used two different maps: an Evacuation Zones map released by
New York City’s Office of Emergency Management (06/20013), and the Hurricane
Sandy Impact Analysis by the Federal Emergency Management Agency (FEMA)
Modeling Task Force (MOTF), which highlights the areas flooded by Sandy
(Figure 3a and b).

Figure 3a shows the evacuation map as issued by FEMA. The zones determine
when an area has to be evacuated, with zone 1 being the first (relatively weak
flooding) and zone 6 being the last (a very strong event). We intersected this map
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Table 3:
Principal components of New York’s SoVI

Variance
Factor Name explained Principal variables Correlation Sign

1 Poverty 17.4% Per Capita Income −0.849 +

% Earning $200,000+ −0.894

2 Dense Urbanization 16.3% % with No Car 0.879 +

% Renters 0.794
Population Density 0.766

3 Black and Single 15.8% % Black 0.838 +

Parent Households % Female-Headed Households 0.800
% Children in Married-Couple

Families
−0.723

4 Age 11.9% % Under Age 5 or Over Age 65 0.891 +

Median Age 0.753

5 Hispanic 11.8% Percent Hispanic 0.745 +

Percent Native American 0.758

Figure 2:
Weighted SoVI (left) and Averaged SoVI (right) for New York (quintiles)
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Figure 3:
(a) Evacuation zones and (b) Sandy flooding extent maps, New York

 

with the block group boundaries base map in order to give an ‘evacuation score’
to each block group. This score was assigned to the block group based on the
proportion of the block group that fell in the zone (majority rule). We reclassified
the evacuation zones such that each block group fell into one of the seven categories,
moving from lowest to highest risk. Category A represents block groups not in any
evacuation zone, and categories B-G represent those in the lowest flood risk category
(zone 6) to those in the highest category (zone 1). We included the evacuation zones
because Sandy was a singular event with flood impacts that were determined by the
specific meteorological conditions that produced it. The evacuation zones represent
a broader risk assessment for hurricanes with multiple trajectories, wind speeds, and
locations of landfall.

Figure 3b represents the area covered by Hurricane Sandy flooding in NYC.
Here we created a ‘flooding score’ for each block group, and separated them into
four categories. Category A represents block groups outside of the flooding zone
(77.5% of all block groups). Using quantiles (7.5% each) we divided the remaining
block groups as follows: category B was 0.01–13.5% flooded, category C was 13.6–
50% flooded, and category D was 50–100% flooded. We were thus able to compare
the social vulnerability levels based on both a theoretical (evacuation) score and a
factual exposure (flooding) score.
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Table 4:
Mumbai SoVI variables

Variables Category Effect on the SOVI

Population Density Urbanization +

% Female Gender +

% Under Age 6 Age +

% Scheduled Tribes or Castes Race/Ethnicity +

% Literacy Education −

% Slum Population Income +

% Workers Among Females Gender −

% Unemployment Social Exclusion +

% of Households Using Bank Services Social Exclusion –
% of Households with a TV Income –
% of Households with a Motorcycle Income –
% of Households with a Car Income –

4.2 Mumbai

4.2.1 Mumbai social vulnerability

Up-to-date, high-resolution census data for Mumbai were much more difficult to
obtain, and matching boundary files had to be obtained from third parties. The
Indian census provides relatively good-quality, recent (2011), and easy-to find data
at a country, state, or city level. But it was impossible to locate more spatially
resolved data for city-level analyses. Ultimately we settled on data from the
2001 census for 99 wards (average of 120,000 inhabitants/ward), and selected 12
variables that fit the factors that contribute to vulnerability, as described in the
introduction to section 4 (Table 4). We believe that the 2001 data are reasonably
representative of conditions at the time of the Mumbai Floods.

We performed a PCA, and obtained three components representing 76.4% of the
total variance (Table 5). Again, we created an averaged and weighted (by percentage
variance explained) SoVI. Figure 4 presents a map of the results.

The results show that, as expected, the wealthy Mumbai City District, located in
the southern part of the city, is the least vulnerable. The highest SoVI scores are
concentrated in the eastern and northwestern sections of the city. In Mumbai the
central business district is relatively prosperous, while the northern parts of the city
are dominated by poorer populations who either work locally or commute to the
business district by train. The northern sections are also home to some of the most
densely populated slums in the world.
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Table 5:
Principal Mumbai components extracted by PCA

Variation
Factor Name explained Principal variables Correlation Sign

1 Standard of life
and access to
information

42.1 % % Households Using Bank
Services

0.95 −

% Households with TV 0.94
% Literacy 0.90

2 Employment 17.8 % % Unemployment 0.97 +

3 Female employment 16.5 % % Workers Among Females 0.89 −

4.2.2 Mumbai flood exposure

We obtained data from Ranger et al. (2011) and Hallegatte et al. (2010), in which
they modeled the flood extent associated with the July 2005 flood (Figure 5). The
data are derived from relatively coarse-resolution digital elevation models using
NASA Shuttle Radar Topography Mission data, and once again do not match the
resolution of the data that we had available for NYC.

4.2.3 Mumbai data limitations

While the SoVI maps give a sense of the overall distribution of social vulnerability
levels within the city, it should be emphasized that the ward scale is not accurate
enough to depict Mumbai’s complex realities, as a single ward can contain both
rich neighborhoods and slums. At this scale of analysis it is tempting to commit
the ecological fallacy of assuming a degree of homogeneity within units that does
not exist. Furthermore, there are far fewer variables available for Mumbai than for
NYC, which limits the flood-relevance of the analysis. In particular, for Mumbai we
lack age structure data that would permit the construction of an under-five and over-
65 indicator similar to the indicator created for New York. Finally, while the census
data of 2001 may reflect realities at the time of the flood event, they are clearly dated
for a city that is evolving so rapidly.

On the exposure side, the exposure data were modeled based on relatively coarse-
resolution elevation models, and because the flood polygons represent an extreme—
i.e. a once-in-200-year event (Hallegatte et al. 2010)—they cannot be seen as
representative of more typical flooding patterns.
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Figure 4:
Weighted SoVI scores, 5 quintiles

5 Results

5.1 New York City

For New York City the average SoVI scores by evacuation category are in Table 6,
and the average SoVI scores by proportion of block group flooded are in Table 8.
We also provide average values for the indicators that have been found to be
particularly relevant to flood vulnerability assessment in Tables 7 and 9. The
difference in means are all significant at the p< 0.01 level or higher. The fact that all
but a few of the categories have above-average SoVI scores (>0) is a reflection
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Figure 5:
Digitized flood extent map for the 2005 event (data courtesy Ranger et al. 2011)

of the population-weighting; densely populated block groups have higher SoVI
scores.6 A separate analysis in which the mean SoVI scores were calculated without
population weighting resulted in more SoVI scores below the mean in several
exposure categories.

The results provide only limited support for the differential exposure hypothesis.
The SoVI scores are the same in the most flooded (category D) and the non-
flooded (category A) areas. Flood category A’s high scores probably reflect the high
concentrations of poverty in Harlem and the Bronx, which are located farther from
the coast and at higher elevations. The SoVI scores are highest in the highest risk
evacuation zone, but are lowest (and nearly inverted) in the next-highest risk zone,

6 The Pearson’s r between population density and SoVI scores is 0.35 (p< .0001).
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Table 6:
NYC SoVI averages for evacuation categories

Category Weighted SoVI Averaged SoVI

A (no evacuation) 0.02 0.02
B (low risk) 0.02 0.01
C 0.04 0.03
D 0.05 0.04
E 0.07 0.05
F −0.08 −0.09
G (high risk) 0.08 0.09

Table 7:
NYC averages of individual indicators for evacuation categories (high values in bold)

% Population % of Pop % Female
aged % Population with less than headed %

Category <5 and >65 in poverty 12th grade education Households Black

A (no evacuation) 18.6 18.5 21.6 39.4 23.9
B (Zone 6) 17.9 19.6 21.9 40.6 25.8
C (Zone 5) 18.4 18.6 21.1 41.3 31.0
D (Zone 4) 18.4 17.4 20.0 41.8 30.7
E (Zone 3) 19.2 18.2 19.2 42.1 32.8
F (Zone 2) 18.9 14.4 18.3 38.4 23.2
G (Zone 1) 22.0 17.4 19.4 39.6 19.5

Table 8:
NYC SoVI averages for flooding categories

Category Weighted SoVI Averaged SoVI

A (0% flooded) 0.03 0.03
B (0.01–13.5% flooded) −0.08 −0.07
C (13.6–50% flooded) −0.03 −0.02
D (50–100% flooded) 0.03 0.03

the largest spatial area of which is found in southern Brooklyn, northwestern Staten
Island, and the more prosperous parts of Queens.

The age dependency variable shows relatively consistent results across all of the
evacuation and flood risk categories except the highest evacuation and flood risk
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Table 9:
NYC averages of individual indicators for flooding categories (high values in bold)

% Population % of Pop % Female
aged % Population with less than headed %

Category <5 and >65 in poverty 12th grade education Households Black

A (0%
flooded)

18.4 18.9 21.7 40.3 26.4

B (0.01–13.5%
flooded)

19.4 16.2 17.5 37.9 22.5

C (13.6–50%
flooded)

19.0 15.9 18.6 40.0 22.6

D (50–100%
flooded)

21.5 16.1 18.6 38.8 21.0

categories, where there is a ∼ 2 percentage-point higher dependency. This finding
may suggest there are greater numbers of retirees or young families living on the
waterfront, although without more data this remains a hypothesis. By contrast, the
other social vulnerability indicators are all highest for flood category A. Similarly,
for zone 1 there is a significantly higher age dependency, but the other indicators
show no discernible pattern.

We tested for the PEB, setting two thresholds: >30% and >50% block group
area flooded. Our aim was to determine whether the fraction of the poor population
exposed to Hurricane Sandy flooding was higher than the fraction of the total
population. We found that almost exactly the same proportion of the poor population
and the total population were flooded in both groups: ∼ 0.08 of the total population
and 0.07 of the poor population experienced >30% flooding, and 0.06 of the total
population and 0.05 of the poor population experienced >50% flooding. These
results do not support the differential exposure hypothesis.

5.2 Mumbai

We used the 2005 flooding extent maps to compare average SoVI scores to exposure.
We created four categories: category A is made up of non-flooded wards, and
categories B to D consist of wards from the least to the most flooded by proportion
area; again divided into equal intervals. We then applied the difference in means
analysis to obtain Table 10. As we did in presenting the NYC results, we provide
average values for indicators that were found to be particularly relevant to flood
vulnerability assessment in Table 11, reporting only those indicators for which the
differences in means are significant at the p < 0.10 level or higher (two indicators,
percentage population scheduled castes or tribes and percent population < 6, did not
have statistically significant results).
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Table 10:
Mumbai SoVI averages for flooding categories

Weighted SoVI
Category (results not significant) Averaged SoVI

A (no flood) 0.14 0.19
B (low flood) 0.34 1.00
C (med. flood) 0.25 0.80
D (high flood) 0.29 0.95

Table 11:
Mumbai average indicator scores by flooding categories (high value in bold)

% Households with
Category % Slum population a television

A (no flood) 21.7 70.3
B (low flood) 41.5 76.7
C (med. flood) 43.9 79.4
D (high flood) 49.3 75.6

Overall, the Averaged SoVI scores are higher for each flood category than in
New York. The highest scores are for the added SoVI across all flooded areas.
The Weighted SoVI gives more importance to factor 1 (access to information;
42.6% of variance explained), and generally results in lower SoVI scores across
all of the flooded categories than the Averaged SoVI. Furthermore, the difference in
means is not significant. In both cases, the main observation is that the wards with
no flooding are always the least vulnerable for each type of SoVI. This analysis
generally confirms our hypothesis that the socially vulnerable wards were more
affected by the July 2005 flash floods; or at a minimum that the least-exposed wards
had the lowest levels of social vulnerability. While the results are interesting, and
suggest tentative support for the differential exposure hypothesis, we would require
higher resolution census data and more spatially explicit flood maps to conclusively
confirm the hypothesis.

We also tested for the PEB. Since 78 of 99 wards experienced at least some
flooding, we set three thresholds – >10%, >30% and >50% of the ward area flooded
– to determine whether the fraction of the slum population exposed to the flood was
higher than the fraction of the total population. We found that almost exactly the
same shares of the slum population and of the total population were found in wards
that were >10% and >30% flooded (∼0.72 and 0.31, respectively, for the slum and
the total population), whereas marginally higher fractions of the slum population
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were found in the wards that were >50% flooded (0.185 of the slum population
versus 0.155 of the total population). These results provide only limited evidence to
support the differential exposure hypothesis.

6 Discussion and conclusion

In the case of New York, our study provides only limited support for the hypothesis
that the most socially vulnerable are differentially exposed to flood hazards. For
Mumbai, we find stronger support for this hypothesis, but we also acknowledge
the data limitations. Our results are tentative for a number of reasons. First, while
the differences in means are statistically significant, the actual differences in SoVI
scores are often quite small. But there are also broader data and methodological
challenges. Here we discuss the limitations of this study, which are broadly
applicable to urban spatial vulnerability assessments in three areas: uncertainty,
spatial resolution, and the use and limitations of aggregate indices such as the SoVI.

In the United States there are large margins of error in the ACS data at the
block group level, and there are arguments for using data at the census track level
(Spielman et al. 2014, Bazuin & Frazier 2013), even though there is a loss in
spatial precision when units are overlaid on exposure categories.7 Thus, the highest
resolution units introduce uncertainty owing to the small household sample sizes.
At the other extreme, many developing countries provide data at highly aggregated
levels only, often without matching spatial boundary layers. The data for Mumbai
are so highly aggregated and so infrequently updated that their use introduces
other forms of uncertainty; namely, that the large units mask major sub-unit spatial
variability in population characteristics, and that the infrequent updates inadequately
capture changes in highly dynamic urban populations.

These issues are indicative of a general problem that arises in urban climate
vulnerability assessments conducted in developing countries: there is a need for
higher resolution, regularly updated spatial data for both exposure and the exposed
elements (Martine and Schensul 2013). For the exposure estimates, the flood
extents we used were reasonably accurate for New York, whereas for Mumbai
the flooded areas were modeled based on fairly coarse-resolution satellite-derived
digital elevation models. For the exposed elements, we were able to obtain for
NYC census data for more than 6,198 block groups averaging ∼ 1, 000 inhabitants,
but for Mumbai we were only able to obtain data for 99 wards averaging
∼ 120, 000 inhabitants. The lack of access to high-resolution census data in
many developing countries obviously limits the spatial precision of vulnerability
assessments. Dasymetric mapping, in which relatively coarse-resolution population
inputs are redistributed based on ancillary data (e.g. information on slopes or
parklands), is increasingly being employed to model population distributions at

7 There are 4,336 census tracts in New York City, as opposed to 6,198 block groups.
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higher levels of spatial resolution (Mantaay et al. 2009). Yet the process involved
in this type of mapping is time consuming, and not without its own technical
challenges. Moreover, it less evident how we can spatially disaggregate population
characteristics (as opposed to population counts).

There are also temporal dimensions to uncertainty. Our research is retrospective
and does not necessarily represent the present reality (at least in Mumbai, a dynamic
city for which the only available data were from 2001) or likely future patterns, as
flood and storm surge risks are intensifying as the climate changes (IPCC 2012).
Forecasting flood extents may be possible using standard modeling techniques
(e.g. Storch et al. 2011), but predicting future social vulnerability is much harder.
Forecasting future risks and vulnerabilities for cities and communities is becoming
increasingly important for the design of adaptation interventions. There are incipient
efforts to use big data sources, such as mobile phone recharge rates or satellite data,
to provide more real-time estimates of poverty for climate resilience, but this area
of research has not yet reached a high level of maturity.

Turning to the issue of aggregate indices, we note that the SoVI itself, like all
PCA-based methods, is driven by the statistical relationships between the indicators,
and not by theory (Abson et al. 2012). Thus, the most important indicators from a
theoretical perspective, or those used to assess susceptibility to floods (e.g. percent
of population aged > 65), may influence the overall results the least, especially
if there are few covariates. It is also possible that some of the variables that
theoretically predict greater harm (health, economic, or mortality impacts), such
as the percentage of the population who are elderly, may not correlate with actual
outcomes. This might be the case, for example, if the elderly are well off and have
the means to escape easily (i.e. a car or a second home). While we feel that our
process for identifying variables was robust, given the low levels of mortality or
other outcome measures, we could not identify which factors best predicted that
outcome variable. In post-Sandy surveys, Madajewic and Coirolo (2015) found that
poverty levels were rather poor predictors of losses. In the wake of Hurricane Sandy,
those who suffered the greatest impacts (economic losses) were middle-income
homeowners, whereas renters in lower socioeconomic brackets were able to move
out of the area, avail themselves of social services, and recover rather quickly. We do
not have as much evidence for Mumbai, but broadly it seems that despite the severity
of the flood, mortality levels were limited owing to self-help networks such as slum
dweller associations (de Sherbinin et al. 2007). In both cases, it is clear that there
is a need for more targeted data collection efforts post-event to determine where the
greatest vulnerabilities lie. In turn, these data can help to refine the ‘global’ models,
such as the SoVI, which can cover broad areas using census-derived metrics.

In terms of policy relevance, this work contributes to the broader environmental
justice literature that investigates the extent to which poorer populations are
disproportionately exposed to hazards. The effect of climate extremes on exposed
populations is the stuff of weekly headlines. As we noted earlier, we are not only
likely to see more extreme weather events in the future (IPCC 2012), but many of
today’s extreme events can be attributed to climate change (James 2015, Herring
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et al. 2014). Yet assessing the environmental justice aspects of climate extremes
is in many ways more challenging, partly because climate change impacts are a
more evenly distributed ‘public bad’ than, for example, toxic waste sites; and partly
because there is uncertainty about the location of future impacts.

As we discussed in the introduction, there are theoretical reasons to suppose
that poorer populations may be disproportionately located in flood zones if those
zones are characterized by lower rents. But there are also reasons to suppose
that wealthier populations may be drawn to locations along shorefronts and rivers
because of the amenities these settings offer. The availability of land in flood-
prone areas, such as brownfields or former docklands, may drive expansion in
these areas, as exemplified by New York City Mayor Bill de Blasio’s decision
to place more affordable housing along highly exposed shorelines (Bagley 2015).
Given the market distortions introduced by government-subsidized flood insurance
in high-income countries and the laissez-faire approaches to land management and
growing informal settlements in low-income countries, we can expect that many
more people – both the well off and the poor – will find themselves in flood zones
in the future. While we may not have provided definitive evidence in this study of
differential exposure in the two cities, we maintain that understanding the social
protection needs of vulnerable populations will become increasingly important in
the context of climate change (Johnson et al. 2013).
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Demšar, U., P. Harris, C. Brunsdon , A. S. Fotheringham and S. McLoone 2013. Principal
component analysis on spatial data: An overview. Annals of the Association of American
Geographers 103(1): 106–128.



Alex de Sherbinin and Guillem Bardy 157

Dhage, S. S., et al. 2006. Marine water quality assessment at Mumbai west coast.
Environmental International 32: 149–158.

Emrich, C. 2011. The SoVI Recipe. University of South Carolina, Hazards and Vulnerability
Research Institute, January 2011. http://webra.cas.sc.edu/hvri/docs/sovi 32 recipe.pdf,
accessed on 20 June 2013.

Fekete, A. 2010. Social vulnerability to river floods in Germany. UNU-EHS Graduate
Research Series, PhD Dissertation.

Fischer, E. M. and R. Knutti 2015. Anthropogenic contribution to global occurrence
of heavy-precipitation and high-temperature extremes. Nature Climate Change,
doi:10.1038/NCLIMATE2617.

Gibbs L.I. and C. S. Holloway, May 2013. Hurricane Sandy After Action Report and
Recommendations to Mayor Michael R. Bloomberg, www.nyc.gov/html/recovery/

downloads/pdf/sandy aar 5.2.13.pdf.
Goldstein, J. 2013. Death of Rockaways Man Is Linked to Hurricane

Sandy. The New York Times. www.nytimes.com/2013/06/25/nyregion/

death-of-rockaways-man-is-linked-to-hurricane-sandy.html? r=0, accessed on
24 June 2013.

Government of Maharashtra 2005. Maharashtra Floods 2005, Relief and Rehabilitation.
http://mdmu.maharashtra.gov.in/pdf/Flood/statusreport.pdf.

Hallegatte, S., N. Ranger , F. Henriet, A. Patwardhan, K. Narayanan, S. Ghosh, et al. 2010.
Flood Risks, Climate Change Impacts and Adaptation Benefits in Mumbai: An Initial
Assessment of Socio-Economic Consequences of Present and Climate Change Induced
Flood Risks and of Possible Adaptation Options. OECD Environment Working Papers,
No. 27, Paris: OECD Publishing. http://dx.doi.org/10.1787/5km4hv6wb434-en.

Herring, S. C., M. P. Hoerling, T. C. Peterson and P. A. Stott 2014. Explaining extreme events
of 2013 from a climate perspective. Special Supplement to the Bulletin of the American
Meteorological Society 95(9).

Horton, R., C. Little, V. Gornitz, D. Bader and M. Oppenheimer 2015. New York City Panel
on Climate Change 2015 Report Chapter 2: Sea Level Rise and Coastal Storms. Annals of
the New York Academy of Sciences 1336: 36–44. doi:10.1111/nyas.12593.

Horton, R., C. Rosenzweig, V. Gornitz, D. Bader and M. O’Grady 2010. Climate risk
information. Annals of the New York Academy of Sciences 1196(1): 147–228.

Houston, D., A. Werritty, D. Bassett, A. Geddes, A. Hoolachan and M. McMillan 2011.
Pluvial (rain-related) flooding in urban areas: The invisible hazard. Joseph Rowntree
Foundation, November 2011. http://www.jrf.org.uk.

Imhoff, M.L., P. Zhang, R.E. Wolfe and L. Bounoua 2010. Remote sensing of the urban
heat island effect across biomes in the continental USA. Remote Sensing of Environment
114(3): 504–513.

IPCC (Intergovernemental Panel on Climate Change) 2012. Managing the Risks of Extreme
Events and Disasters to Advance Climate Change Adaptation. In A Special Report of
Working Groups I and II of the Intergovernmental Panel on Climate Change, eds A. Lavell,
M. Oppenheimer, O.-D. Cardona, M. van Aalst, S. Seneviratne, N. Nicholls et al.
Chapters 1, 2 and 3. Cambridge, UK, and New York, NY: Cambridge University Press.



158 Social vulnerability to floods in two coastal megacities

Intergovernemental Panel on Climate Change (IPCC) 2007. Climate Change 2007: The
Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, eds S. Solomon, D. Qin,
M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, pp. 996.
Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Jacob K. H., V. Gornitz and C. Rosenzweig 2007. Vulnerability of the New York City
metropolitan area to coastal hazards, including sea-level rise: Inferences for urban
coastal risk management and adaptation policies. In: Managing coastal vulnerability,
eds L. McFadden, R. Nicholls and E. Penning-Rowsell. Oxford, UK: Elsevier Publishing.

Jha, A. K., R. Bloch and J. Lamon 2012. Cities and flooding. Washington, DC: The World
Bank and GFDRR.

Johnson, C., H. B. Dulal, M. Prowse, K. Krishnamurthy and T. Mitchell 2013. Social
protection and climate change: Emerging issues for research, policy and practice.
Development Policy Review 31(s2): 2–18. doi:10.1111/dpr.12036.

Johnson, D. P. and J. S. Wilson 2009. The socio-spatial dynamics of extreme urban heat
events: The case of heat-related deaths in Philadelphia. Applied Geography 29: 419–434.

Kinney, P. L., D. Shindell, E. Chae and B. Winston 2000. Climate change and public health:
Impact assessment for the NYC Metropolitan Region. Metropolitan East Coast Climate
Assessment. http://metroeast climate.ciesin.columbia.edu/reports/health.pdf, accessed on
1 May 2015.
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Appendix: Correlation and covariance matrices

Correlation and covariance matrices are on the following pages.
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